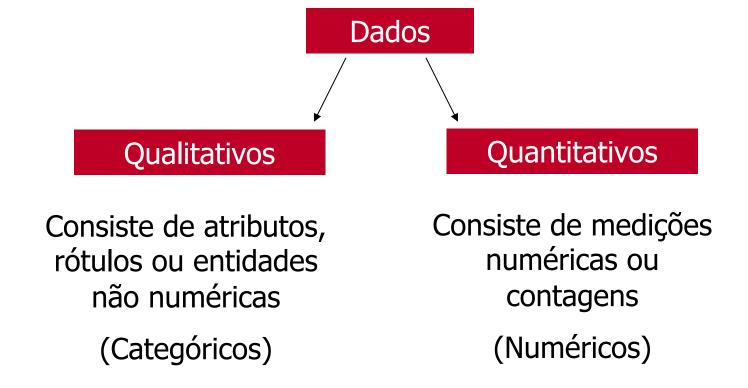
Tipos de Dados

 Os conjuntos de dados são compostos por dois tipos de dados: dados qualitativos e dados quantitativos



Tipos de Dados

- Considere o seguinte exemplo
 - Notas de alunos em uma determinada disciplina

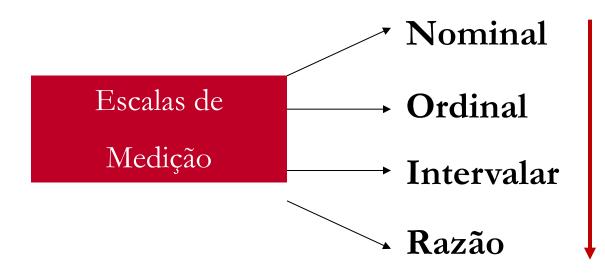
Aluno	Nota				
Sally	3.22				
Bob	3.98				
Cindy	2.75				
Mark	2.24				
Kathy	3.84				

Qualitativo

Quantitativo

Escalas de Medição

Há quatro escalas de medição de um dado, quais sejam:



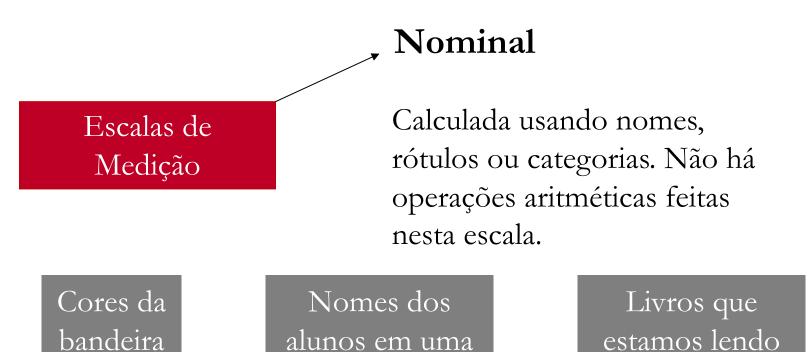
Aumento do número de operações

Escala Nominal

- Representam categorias que não mantém necessariamente relação entre elas
- Não é possível realizar operações aritméticas (soma, média, etc.)

do Brasil

Normalmente realiza-se apenas a contagem das observações em cada categoria



classe

Insper

Escala Ordinal

- Categorias podem ser representadas por nomes, símbolos ou números, porém há uma ordenação de uma categoria em relação à outra
- A distância entre uma categoria e a outra não pode ser medida numericamente
- Além da operação de contagem, permitem operações que envolvam ordenação (maior/menor)

Ordinal

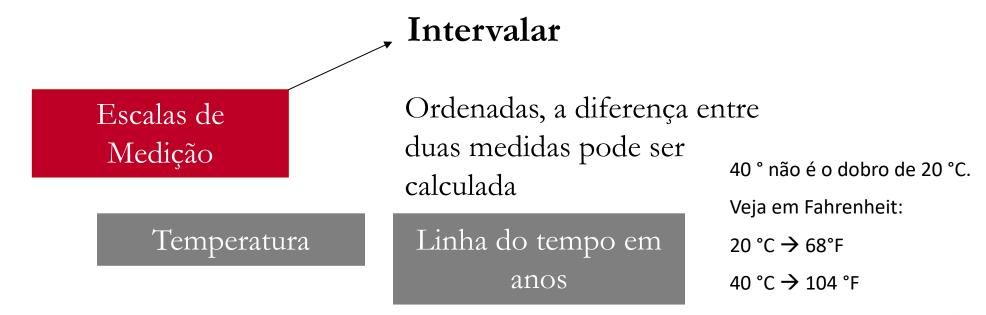
Escalas de Medição Podem ser ordenadas entre si, mas não é possível diferenciá-las numericamente.

Nível de experiência: junior, pleno e senior

Números das camisas dos jogadores da seleção Top 10 músicas mais tocadas no momento

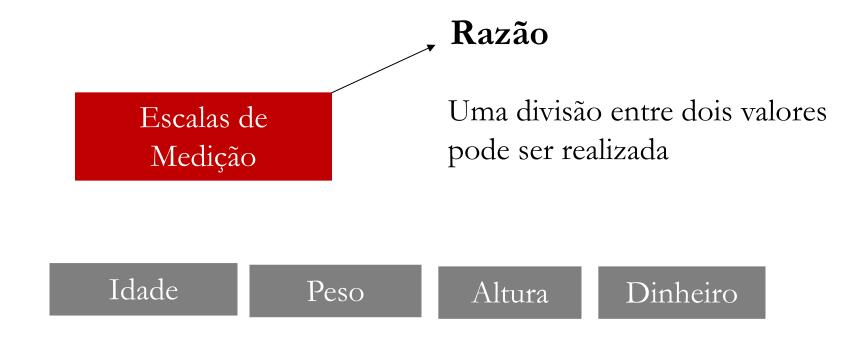
Escala Intervalar

- Escala quantitativa
- O valor nulo não corresponde à ausência da característica medida
- A escala possui um zero arbitrário
- Exemplo: 0 °C não significa ausência de temperatura (-273 °C)
- Operação de divisão é ilegítima em dados intervalares



Escala Razão

- Escala quantitativa
- O zero corresponde à ausência da característica medida
- É possível realizar todas as operações aritméticas em dados dessa escala

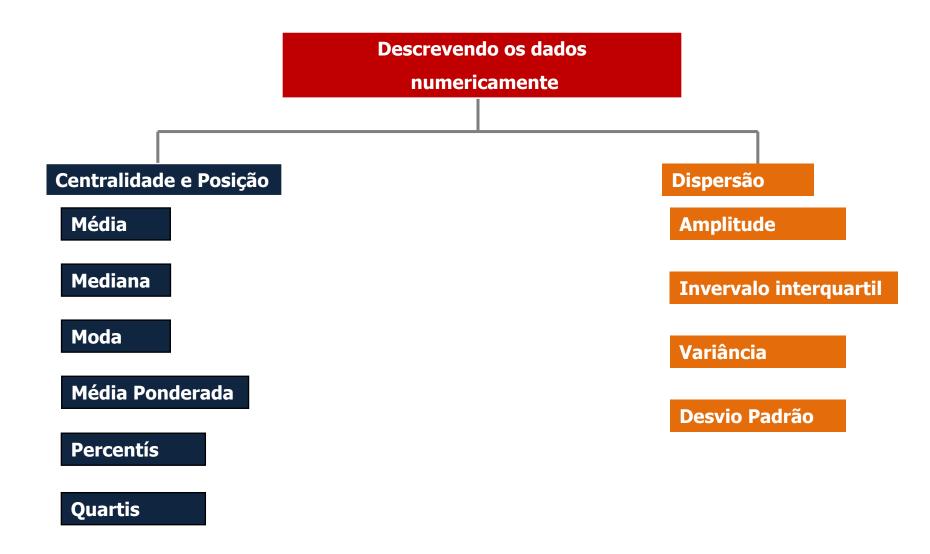


Dados Quantitativos

Descrevendo os dados numericamente - motivação

Dados Quantitativos

Descrevendo os dados numericamente

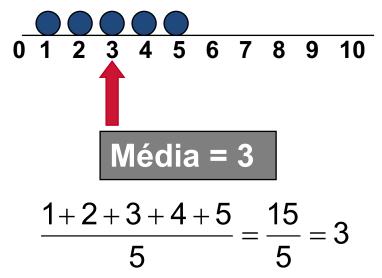


Média

A mais comum das medidas de tendência central

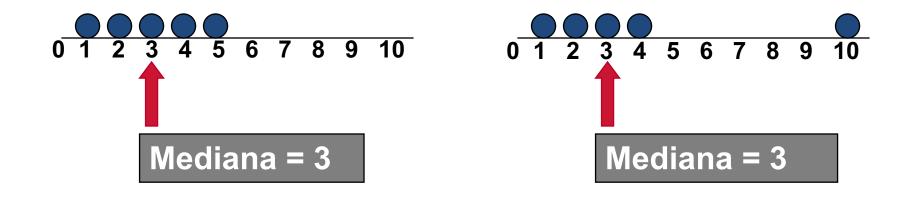
Média = soma dos valores dividida pela quantidade dos valores

A média é afetada por valores extremos (outliers)



Mediana

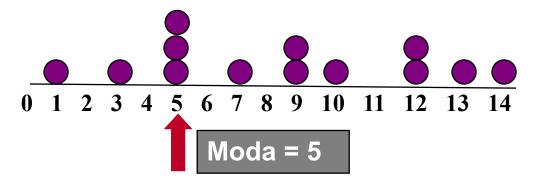
- Em um vetor ordenado a mediana é o elemento do meio
- A mediana não é afetada por valores extremos

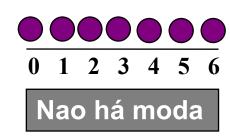


Se o vetor é par, a mediana é a média dos elementos centrais

Moda

- Representa o valor que ocorre com maior frequência no conjunto de dados
- Não é afetada por valores extremos
- Utilizada tanto por dados qualitativos quanto quantitativos
- É possível que não haja moda
- É possível também que possam existir várias modas





Média ponderada

 Utilizada quando os valores estão agrupados pela frequência ou importância relativa

Exemplo: Amostra de 26 tarefas

Dias para finalização	Frequência	Média ponderada dos dias para finalização:
5	4	$\sum w_i x_i (4 \times 5) + (12 \times 6) + (8 \times 7) + (2 \times 8)$
6	12	$X_{W} = \frac{\sum w_{i}x_{i}}{\sum w_{i}} = \frac{(4\times3)+(12\times0)+(0\times7)+(2\times0)}{4+12+8+2}$
7	8	
8	2	$=\frac{164}{26}=6.31$

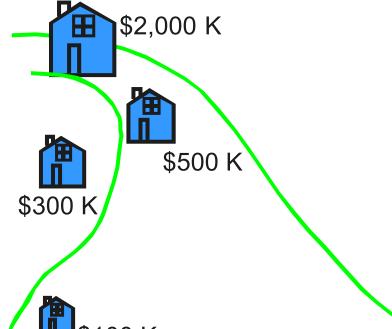
Exemplo

Casas de veraneio

Cinco casas de veraneio

Preços:

\$2,000,000 500,000 300,000 100,000



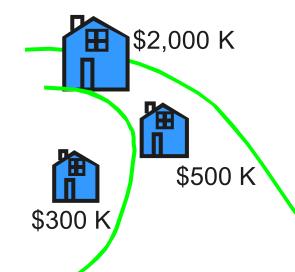
Exemplo

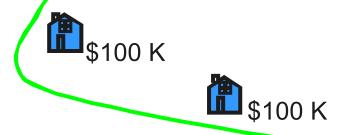
Casas de veraneio

Cinco casas de veraneio

Preços:

\$2,000,000 500,000 300,000 100,000





• Média: (3,000,000 / 5)
= \$600,000

- Mediana: valor que está na metade do vetor ordenado.
 - = \$300,000
- Moda: valor mais frequente
 - **= \$100,000**

Outro exemplo

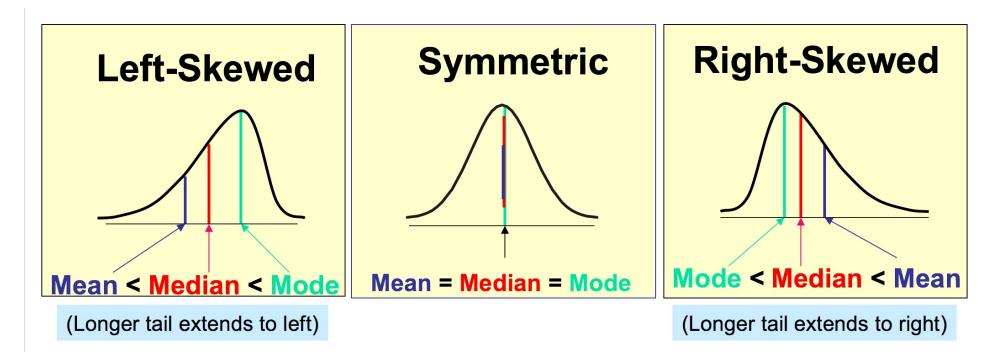
- Uma organização fundada há 29 anos se une a outras empresas mais antigas:
 - Tempo de existência das organizações:

53 32 61 57 39 44 57 29

Calcule a média, a mediana e a moda. Qual medida de tendência central está sendo mais afetada pela nova empresa?

Distribuição dos Dados

Simétrica ou Assimétrica (Skewed)



Percentis e Quartis

O p percentil em um conjunto de dados significa que:

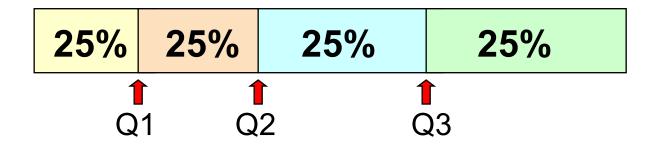
p% dados são menores ou iguais a esse valor

(100 - p)% é maior ou igual a esse valor (onde $0 \le p \le 100$)

- 1° Quartil = 25 percentil
- 2° Quartil = 50 percentil= mediana
- 3° Quartil = 75 percentil

Percentis e Quartis

Os quartis dividem os dados em quatro subconjuntos:



- Exemplo
 - Determinar o primeiro quartil

Vetor ordenado: 11 12 13 16 16 17 18 21 22

$$(n = 9)$$

Q1 = 25 percentil, o qual está na posição

$$\frac{25}{100}$$
 (9+1) = 2.5

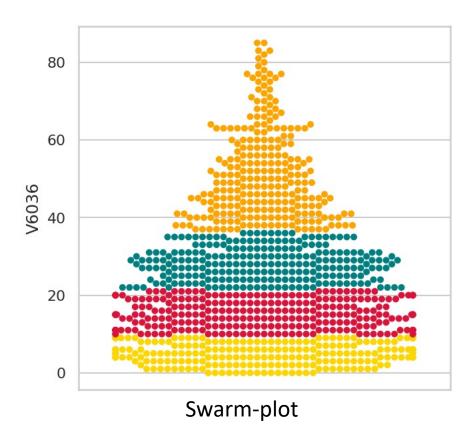
$$i = \frac{p}{100}(n+1)$$

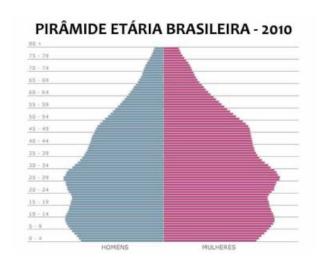
Então, fazemos uso da média entre os elementos nas posições 2 e 3

$$Q1 = (12+13)/2 = 12,5$$

Percentis e Quartis

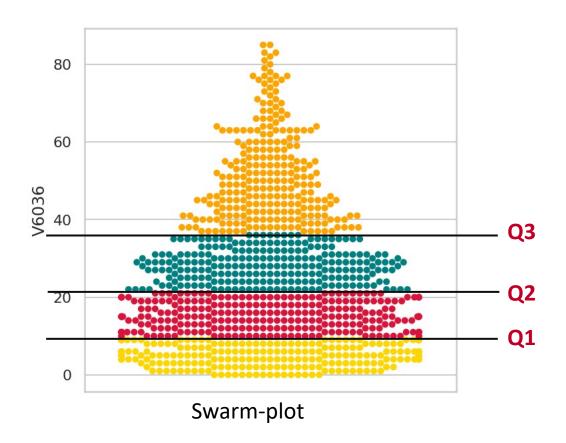
- Exemplo: Censo IBGE 2010 idade da população
- Fragmento de 1000 registros aleatórios selecionados

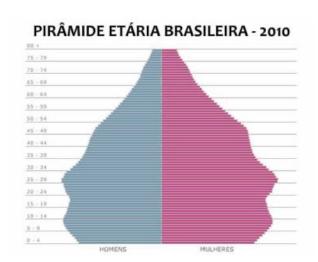




Percentis e Quartis

- Exemplo: Censo IBGE 2010 idade da população
- Fragmento de 1000 registros aleatórios selecionados

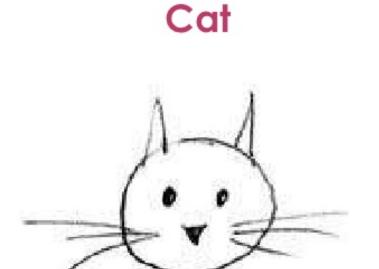




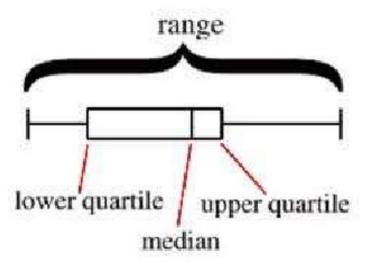
Visualizando Quartis

BoxPlot

■ Também conhecido como Box and Whisker Plot

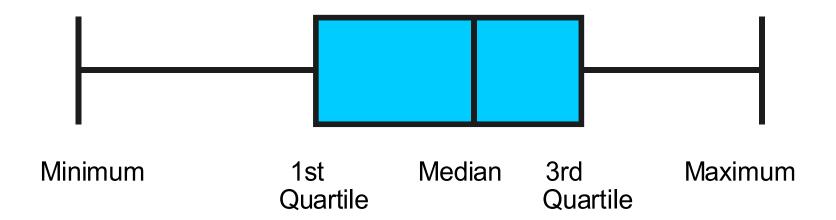


Box and Whisker Plot



Boxplot

- Gráfico que apresenta os quartis de um conjunto de dados
- Em sua configuração clássica, pode ser representado da seguinte maneira

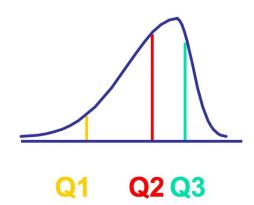


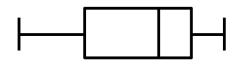
Obs: sem considerar outliers

Boxplot

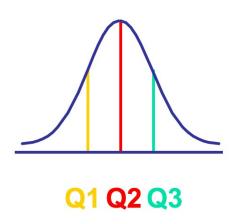
Boxplot e a forma da distribuição

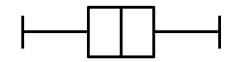
Left-Skewed



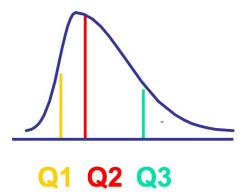


Symmetric



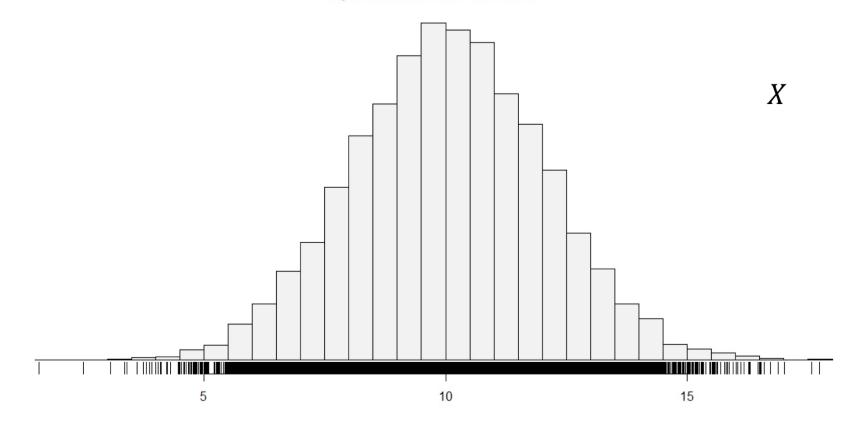


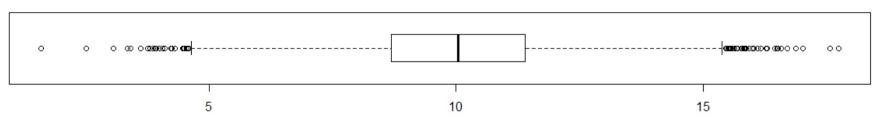
Right-Skewed



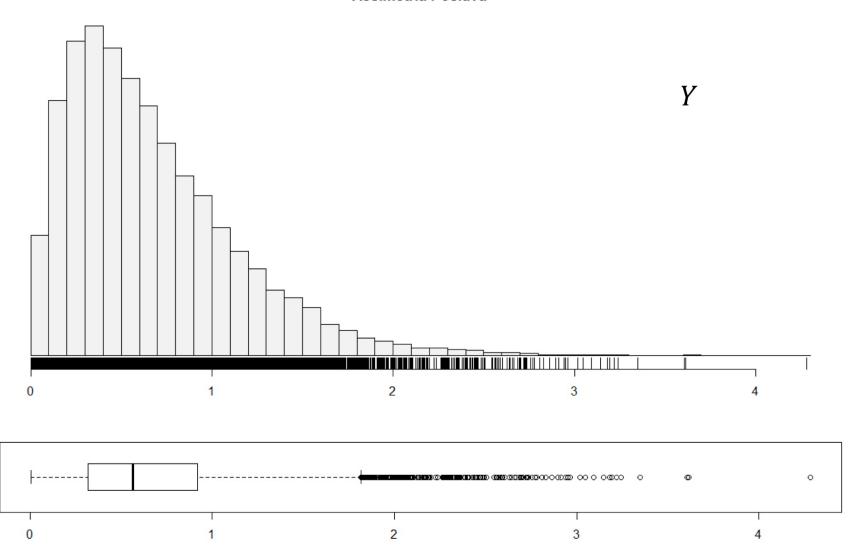
Histogramas e Boxplots

Aproximadamente Simétrica



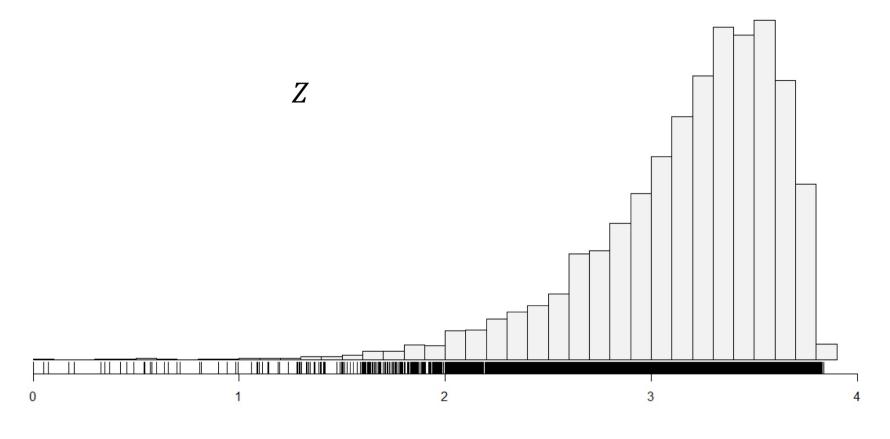


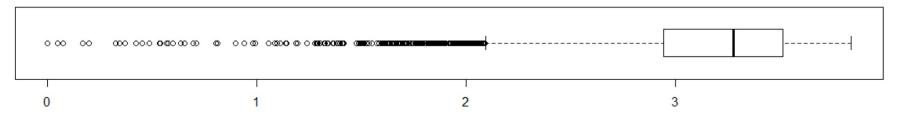
Histogramas e Boxplots



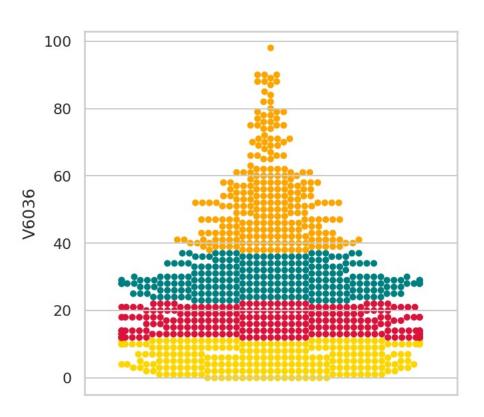
Histogramas e Boxplots

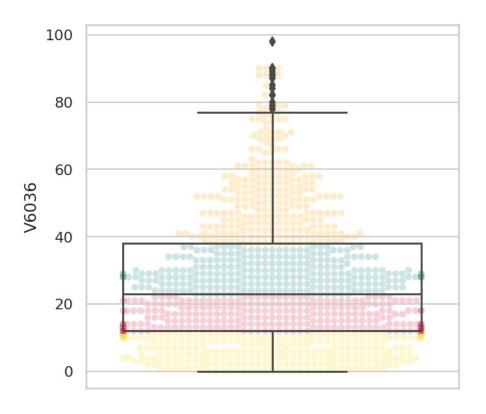
Assimetria Negativa





Boxplots

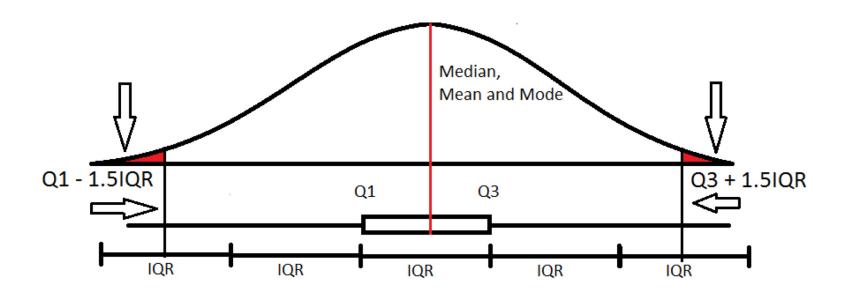




Boxplot

Outliers

- Uma forma de se obter os outliers em um conjunto de dados é usar o intervalo interquartil (IQR)
- Considera-se um outlier todos os valores:
 - Abaixo de Q1 1.5 x IQR
 - Acima de Q3 + 1.5 x IQR



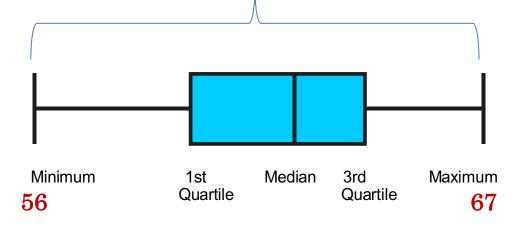
Medidas de dispersão

Amplitude

 A amplitude (range) de um conjunto de dados é a diferença entre o maior e o menor valor no conjunto

Bolsa	56	56	57	58	61	63	63	67	67	67
-------	----	----	----	----	----	----	----	----	----	----

A amplitude é 67 – 56 = 11



Medidas de dispersão

Desvio

 O desvio de uma entrada x em um conjunto de dados é a diferença entre x e a média µ dos dados

Desvio de
$$x = x - \mu$$

- Ao lado temos valores sucessivos de uma certa bolsa de valores em um determinado período
- O valor médio é de 305 / 5 = 61

Bolsa	Desvio
X	$x-\mu$
56	56 - 61 = -5
58	58 - 61 = -3
61	61 - 61 = 0
63	63 - 61 = 2
67	67 - 61 = 6
$\Sigma_X = 305$	$\Sigma(x-\mu)=0$

Medidas de Dispersão

Variância e Desvio Padrão

- Representam a essência do conceito de variabilidade
- Levam em consideração todos os resultados existentes na distribuição
- A variância é uma medida de variabilidade que indica o grau em que todos os valores de uma distribuição se desviam da média. O desvio padrão é a raiz quadrada da variância, expresso portanto na mesma unidade dos dados, facilitando a compreensão
 - Quanto maior, mais os valores se distanciam da média
 - Desvio padrão baixo → grupo é homogêneo
 - Desvio padrão alto → grupo é heterogêneo

Medidas de Dispersão

Variância e Desvio Padrão

Bolsa	Desvio	Quadrado
X	$x-\mu$	$(x-\mu)^2$
56	– 5	25
58	– 3	9
61	0	0
63	2	4
67	6	36
$\Sigma_X = 305$	$\Sigma(x-\mu)=0$	$\Sigma(x-\mu)^2=74$

$$SS_2 = \Sigma(x - \mu)^2 = 74$$

$$SS_2 = \Sigma(x - \mu)^2 = 74$$

$$\sigma^2 = \frac{\Sigma(x - \mu)^2}{N} = \frac{74}{5} = 14.8$$

$$\frac{\mu^{2}}{\frac{5}{9}} = \frac{5}{N} = \frac{\sum (x - \mu)^{2}}{N} = \frac{74}{5} = 14.8$$

$$\frac{0}{\frac{4}{6}} = \frac{14.8}{N} \approx 3.85$$

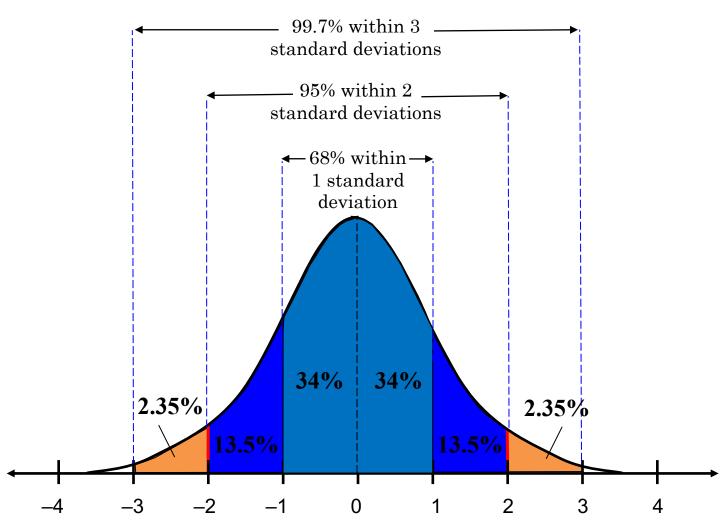
$$\sigma \approx \$3.85$$

$$\sigma \approx \$3.85$$

$$\sigma \approx $3.85$$

Empirical Rule

68 - 95 - 99.7%



Insper