bandit answers
February 13, 2026

1 Bandit, Exploration and Exploitation

The goal of this exercise is to implement a simple bandit algorithm and test it on a simple envi-
ronment.

We will first start by understanding the problem.

1.1 1. Understanding the Bandit Problem

[67]: import gymnasium as gym
import buffalo_gym

env = gym.make("Buffalo-v0", arms=3)
obs = env.reset()
count = O
while count < 10:
action = env.action_space.sample()
obs, reward, terminated, truncated, info = env.step(action)
print (f"Action: {action} - Reward: {reward}")
count += 1
env.close()

Action: 0 - Reward: 0.198054005671376
Action: 1 - Reward: 4.602138457864179
Action: 2 - Reward: 11.17269235642712
Action: O - Reward: 1.8046242540316735
Action: 0 - Reward: 0.7713591800501506
Action: 2 - Reward: 10.589618755163713
Action: 2 - Reward: 10.54969895143081
Action: 1 - Reward: 3.401013191620456
Action: 0 - Reward: 2.9007831899537475
Action: 2 - Reward: 9.718329363803246

Answer the following questions: 1. What the code is doing? 2. What is the best option to take?
3. What is the expected reward of taking the best option?
1.2 2. Implementing an Incremental Update Rule

Complete the function incremental_update to implement the incremental update rule for the
action-value estimates.

[75]:

[76] :

def incremental_update(Q, Times,action, reward):
mimn
Update the action-value estimate (§ for the given action and reward using an,
wincremental update rule.

Parameters:

Q (list): A list of action-value estimates for each action.

Times (list): A list of counts of how many times each action has been taken.
action (int): The index of the action taken.

reward (float): The reward received after taking the action.

Returns:

list: Updated list of action-value estimates.

Qlaction] = Q[action] + (1.0 / Times[action]) * (reward - Q[action])
return Q

And execute the following code to test your implementation:

import gymnasium as gym
import buffalo_gym

arms = 10

Q = [0.0 for _ in range(arms)]

Times = [0 for _ in range(arms)]

env = gym.make("Buffalo-v0", arms=arms)
obs = env.reset()

done = False

while not done:

action = env.action_space.sample()
obs, reward, terminated, truncated, info = env.step(action)
#print (f"Action: {action} - Reward: {reward}")
Times[action] += 1
Q = incremental_update(Q, Times, action, reward)
done = terminated or truncated

env.close()

print("Final action-value estimates:", Q)

Final action-value estimates: [2.829177745503516, 2.7730682439389334,
2.249581901883098, 3.4030128761428493, 4.157544156550374, 1.473789935499445,
1.7553003571190906, 1.994341176742099, 9.958102806132988, 4.90469549397031]

Questions: 1. Which is the best action? 2. What is the expected reward of taking the best action?

1.3 3. Greedy Action Selection

Now that we have implemented the incremental update rule, we can implement a greedy
action selection strategy. Complete the function greedy_action_selection to implement
a greedy action selection strategy. This function will be replace the instruction action =
env.action_space.sample() in the code above

[77]: import numpy as np

We don't want to use the argmax function from numpy because it doesn't break,
~ties randomly.

We want to implement our own version of argmaz that breaks ties randomly.

def argmax(q_values):
mimn
Takes in a list of q_values and returns the index of the item
with the highest wvalue. Breaks ties randomly.
returns: int - the index of the highest value in q_wvalues
top_value = float("-inf")
ties = []

for i in range(len(q_values)):
1f a value in q_values is greater than the highest wvalue update top,
~and reset ties to zero

1f a value is equal to top value add the index to ties

if q_values[i] > top_value:
ties = []
top_value = q_values[i]
ties.append (i)

elif g_values[i] == top_value:
top_value = q_values[i]
ties.append (i)

return a random selection from ties.
return np.random.choice(ties)

[78]: | # ——————————————

Feel free to make any changes to this cell to debug your code
test_array = [0, O, O, O, O, O, O, O, 1, O]

assert argmax(test_array) == 8, "Check your argmax implementation returns the
~index of the largest value"

make sure np.random.choice ts called correctly

np.random.seed (0)
test_array = [1, 0, 0, 1]

assert argmax(test_array) ==
[79]: # More testing to make sure argmax does not always choose first entry

test_array = [0, O, O, O, O, O, O, O, 1, O]
assert argmax(test_array) == 8, "Check your argmax implementation returns the
~index of the largest value"

set random seed so results are deterministic
np.random. seed (0)
test_array = [1, 0, 0, 1]

counts = [0, 0, 0, O]

for _ in range(100):
a = argmax(test_array)
counts[a] += 1

make sure argmax does not always choose first entry
assert counts[0] != 100, "Make sure your argmax implementation randomly,
~choooses among the largest values."

make sure argmax does not always choose last entry
assert counts[3] != 100, "Make sure your argmax implementation randomly,
~choooses among the largest values."

make sure the random number gemerator is called exzactly once whenver ‘argmaz
=13 called

expected = [44, 0, 0, 56] # <-- notice not perfectly uniform due to randomness

assert counts == expected

[80]: def greedy_action_selection(Q):

nimnn

Select an action using a greedy action selection strategy based on they
waction—value estimates (.

Parameters:
Q (list): A list of action-value estimates for each action.

Returns:

int: The index of the selected action.
mmnn

return argmax(Q)

[]1:

In this version, we will run 1000 steps of the

bandit problem and calculate the accumulated reward at each step.
We will run 100 times and average the rewards over time to see if
the agent is learning to select the best action.

import gymnasium as gym
import buffalo_gym

arms = 10
steps = 1000
runs = 2000

average_rewards = [0.0 for _ in range(steps)]

for run in range(runs):

Q = [0.0 for _ in range(arms)]
Times = [0 for _ in range(arms)]
Rewards = [0.0 for _ in range(steps)]

env = gym.make("Buffalo-v0", arms=arms)

obs = env.reset()
step = 0
while step < steps:
action = greedy_action_selection(Q)
obs, reward, terminated, truncated, info = env.step(action)
#print (f"Action: {action} - Reward: {reward}")
Times[action] += 1
Q = incremental_update(Q, Times, action, reward)
Rewards [step] = reward
step += 1

env.close()
#print ("Final action-value estimates:", @)
average_rewards += np.array(Rewards)

average_rewards /= runs

plot the average rewards over steps
import matplotlib.pyplot as plt
plt.plot(average_rewards)
plt.xlabel("Steps")
plt.ylabel("Average Reward")
plt.title("Average Reward over Steps")
plt.show()

Average Reward over Steps

3.70 A

3.65

3.60 A

3.55 7

3.50 A

Average Reward

3.45 A

3.40 A

3.35 T

3.30 +— . T | |
0 200 400 600 800 1000

Steps

Questions: 1. Is the agent able to find the best action? 2. Are the rewards improving over time?

1.4 4. Epsilon-Greedy Action Selection

Now that we have implemented a greedy action selection strategy, we can implement an epsilon-
greedy action selection strategy. Complete the function epsilon_greedy_action_selection to
implement an epsilon-greedy action selection strategy. This function will be replace the instruction
action = greedy_action_selection(Q) in the code above

[82]: def epsilon_greedy_action_selection(Q, epsilon):
nmnn
Select an action using an epsilon-greedy action selection strategy based on,
~the action-value estimates (.

Parameters:

Q (list): A list of action-value estimates for each action.

epsilon (float): The probability of selecting a random action (exploration
wrate).

Returns:

[1:

int:
nmnn

The index of the selected action.

if np.random.rand() < epsilon:
return np.random.randint(len(Q))
else:
return argmax(Q)

In this wversion, we will run 1000 steps

Exzplore: select a random action

Exzploit: select the action with the highest wvalue

of the

bandit problem and calculate the accumulated reward at each step.
We will run 100 times and average the rewards over time to see if
the agent is learning to select the best action.

import gymnasium as gym
import buffalo_gym

arms = 10
steps = 1000
runs = 2000

average_rewards_ep = [0.0 for _
for run in range(runs):

Q = [0.0 for _ in range(arms)]
Times = [0 for _ in range(arms)]
[0.0 for _

Rewards = in range(steps)]

env =

obs = env.reset()
step = 0
while step < steps:

action =

obs, reward, terminated, truncated, info =

in range(steps)]

gym.make ("Buffalo-v0", arms=arms)

epsilon_greedy_action_selection(Q, epsilon=0.01)

env.step(action)

#print (f"Action: {action} - Reward: {reward}")

Times[action] += 1

Q = incremental_update(Q, Times, action, reward)
Rewards[step] = reward
step += 1

env.close()

#print ("Final action-value estimates:"

2 g)

average_rewards_ep += np.array(Rewards)

average_rewards_ep /= runs

plot the average rewards over steps

[]:

import matplotlib.pyplot as plt

plt

plt.
plt.
plt.
plt.

.plot(average_rewards_ep)

xlabel("Steps")

ylabel("Average Reward")
title("Average Reward over Steps")
show ()

Average Reward over Steps

Average Reward

T T T T
0 200 400 600 800
Steps

plot both greedy and epsilon-greedy rewards over steps
import matplotlib.pyplot as plt

plt

.plot (average_rewards, label="Greedy")
plt.
plt.
plt.
plt.
plt.
plt.

plot(average_rewards_ep, label="Epsilon-Greedy e=0.01")
xlabel("Steps")

ylabel ("Average Reward")

title("Average Reward over Steps")

legend ()

show ()

T
1000

[]1:

Average Reward over Steps

g | —— Greedy
—— Epsilon-Greedy e=0.01

Average Reward

T T T T
0 200 400 600 800
Steps

import gymnasium as gym
import buffalo_gym

Now we will run the same experiment with epsilon = 0.1

epsilon = 0.1

arms = 10
steps = 1000
runs = 2000

average_rewards_ep_2 = [0.0 for _ in range(steps)]
for run in range(runs):

Q = [0.0 for _ in range(arms)]
Times = [0 for _ in range(arms)]

Rewards = [0.0 for _ in range(steps)]
env = gym.make("Buffalo-v0", arms=arms)

T
1000

obs = env.reset()
step = 0
while step < steps:
action = epsilon_greedy_action_selection(Q, epsilon=epsilon)
obs, reward, terminated, truncated, info = env.step(action)
#print (f"Action: {action} - Reward: {reward}")
Times[action] += 1
Q = incremental_update(Q, Times, action, reward)
Rewards [step] = reward
step += 1

env.close()
#print ("Final action-value estimates:", @)
average_rewards_ep_2 += np.array(Rewards)

average_rewards_ep_2 /= runs

plot the average rewards over steps
import matplotlib.pyplot as plt

plt
plt
plt
plt
plt
plt

plt.
plt.

.plot (average_rewards, label="Greedy")
.plot (average_rewards_ep, label="epsilon = 0.01")
.plot (average_rewards_ep_2, label="epsilon = 0.1")

.xlabel("Steps")

.ylabel("Average Reward")
.title("Average Reward over Steps")
legend ()

show ()

10

[86]:

Average Reward over Steps

9 -
B -
b=
o 74
% —— Greedy
ﬁ — epsilon = 0.01
E‘ 6 — epsilon = 0.1
S
=i
5 -
4 -
3 - T T T T T T
0 200 400 600 800 1000
Steps

plot the average rewards over steps (first 100 steps)

import matplotlib.pyplot as plt

max_steps = min(100, len(average_rewards), len(average_rewards_ep),.
~len(average_rewards_ep_2))

plt.
.plot(average_rewards_ep[:max_steps], label="epsilon = 0.01")
plt.
plt.
plt.
plt.
plt.
plt.

plt

plot (average_rewards[:max_steps], label="Greedy")

plot(average_rewards_ep_2[:max_steps], label="epsilon = 0.1")
xlabel("Steps")

ylabel ("Average Reward")

title("Average Reward over Steps")

legend ()

show ()

11

Average Reward

Average Reward over Steps

| —— epsilon=10.1

— Greedy
— epsilon = 0.01

T
0 20 40 60 80 100
Steps

12

	Bandit, Exploration and Exploitation
	1. Understanding the Bandit Problem
	2. Implementing an Incremental Update Rule
	3. Greedy Action Selection
	4. Epsilon-Greedy Action Selection

